通过电解冶炼过程得到的普通铝锭的纯度一般在99%以上,普通的铝锭再经过偏析法、三层电解法或联合区域熔炼法可制得高纯铝锭,然后再对高纯铝锭进行锻造、轧制、热处理等,使铝锭内晶粒变细小、致密度增加以满足溅射所需铝靶材的要求。变形处理完成后,再焊接底板,然后对坯料进行机械加工,后对靶材进行表面清洁处理等。铜、钛和钽等靶材的制造工艺除在具体的熔炼方法和加工工艺参数有不同之外,工艺过程基本相同,粉末冶金铸造法是溅射靶材的另一种重要制造工艺,对于钨钛靶这类由两种熔点差别较大的金属组成的合金靶材则会选择粉末烧结工艺,粉末冶金工艺一般选用高纯、超细粉末作为原料。
共计15道工序,l粉末冶炼:对原籵粉末进行前期的气氛烧结,对原籵粉末中气体含量进行控制,l粉末混合:靶材有着特的配方,需的控制各组分的含量,并严格限制杂质含量。在粉末冶全的过程中,需要将各元素充分混合均匀。粒度分布均匀,防止污染并要通过特殊工艺手段制备成混合型复粉,l压制成型:采用粉末冶金工艺制备的靶材需要对粉体料进行预压。使之成为中等密度生坯。其密度的均匀性和内部的缺陷影响着后期高温烧结的成品率,l气氛烧结:预压成型的生坯需要再经过一次或多次的高温烧结,根据不同材籵选择不同的烧结温度曲线,并选择不同的烧结环境。
[1]。发展众所周知。靶材材料的技术发展趋势与下游应用产业的薄膜技术发展趋势息息相关,随着应用产业在薄膜产品或元件上的技术改进,靶材技术也应随之变化,如Ic制造商.近段时间致力于低电阻率铜布线的开发。预计未来几年将大幅度取代原来的铝膜。这样铜靶及其所需阻挡层靶材的开发将刻不容缓。另外,近年来平面显示器(FPD)大幅度取代原以阴极射线管(CRT)为主的电脑显示器及电视机市场.亦将大幅增加ITO靶材的技术与市场需求。此外在存储技术方面,高密度、大容量硬盘,高密度的可擦写光盘的需求持续增加.这些均导致应用产业对靶材的需求发生变化。
因此铋就成了替代铅的材料,5、蓄电池:在铅酸蓄电池中加入0015%~003%的铋。可以使蓄电池在充放电等性能上均有大的改善和提高,国外蓄电池发展的国家已将其作为发展方向加以实施和推广。6、高纯超细氧化铋:高纯超细氧化铋应用于制造新型陶瓷和半导体。还可用于颜料、涂料的制备和铋基氧化物超导体的研制和开发。7、温差半导体材料:温差材料可以应用在太阳能温差发电元件和温差制冷元件。铋的某些金属化合物如(Bi,Sb)2(Te,Se)3等,特别是以Bi2Te3为基础的固溶体合金,是目前公认的好的半导体制冷材料。
镓是一种低熔点高沸点的稀散金属。有“电子工业脊梁”的美誉。镓的化合物是的半导体材料。被广泛应用到光电子工业和微波通信工业。用于制造微波通讯与微波集成、红外光学与红外探测器件、集成电路、发光二极管等。例如我们在电脑上看到的红光和绿光就是由磷化镓二极管发出的。目前,半导体行业金属镓消费量约占总消费量的80%—85%,镓也被应用到太阳能电池的制造中,如砷化镓三五族太阳能电池,该电池具有良好的耐热、耐辐射等特性。其光电转换率非常高。初因为生产、使用成本都非常高,常常被应用在航天和领域,但近几年随着科技的发展。砷化镓太阳能电池的生产和使用成本都在降低。
钼舟,钨舟坩埚:Al2O3在10-4Torr蒸发温度:170℃薄膜的机械和化学性质:有毒,损害真空系统;中文名称:硒。英文名称:Selenium,元素符号Se,元素周期表中原子序数34,VIA族非金属元素。密度为4809g/cm3,熔点221℃,沸点685℃,硒是一种有灰色单质金属光泽的固体。性脆,有毒。能导电,且其导电性随光照强度急剧变化,硒是人体必需的微量矿物质营养素,但摄入过量又会对人体产生危害,硒在地壳中的含量仅为005ppm。且分布分散。年供应量有限。硒的用途非常广泛,涉及电子、玻璃、冶金、化工、医疗保健、农业等领域硒粒。
新乡高纯铝杂质分析成分检测中心,成分分析
更新时间:2024-03-30 00:36:20